u Department of Computer Engineerin

g u

Simulation environment

-

* Simulation = modeling + analysis -
ggtr:ggtor —: DuT —: logic
* Environment > »| analyzer
* design under test (DUT) Modeling \
» different abstraction levels =?
* stimuli generator ‘ /
« different input-data sequences simulator

results analyzer
* is DUT responding correctly?

Different combinations exist...

testbench

circuit model
e 5]

© Peeter Ellervee co-simulation - 1

Department of Computer Engineering

Simulation environment

Testbench & the unit to be tested

Testbench (TB) is a VHDL component which instantiates the UUT
Unit Under Test (UUT) represents a design itself

Testbench may make use of functional models

Functional Model (FM) is a model of a component which represents both the interfaces
and the internal operation or structure of the component

Bus Functional Model (BFM) is a subset of the FM in that it only models the bus
interfaces and bus transactions of the component

Testbench’s purposes
Stimuli generator(s)
Verifier against UUT specification
Report generation (human interface)

© Peeter Ellervee

co-simulation - 2

L] Department of Computer Engineering L]

BFM modeling

* Instruction file command format

* Architectural command format

Instruction

I I I
Data file
fle — | READFILE : (optional) ——>{ COMMAND | |
| PROCESS | | PROCESS |
I I I I ‘ I
: control : : control :
I I I I
I Bus protocol I Bus protocol I
formatted block I formatted block I
instructions (processes, I instructions (processes, I
: concurrent Bus : concurrent Bus
| statements, interface | statements, interface
| etc.) | | components) |
I I I I
L — e e — - 4 L - — - - — — — — - 4
© Peeter Ellervee co-simulation - 3
H===H L Department of Computer Engineering L
LT
TTU1918

Testbench design methodology

UUT validation plan
What to test?

List of errors to be
detected by TB

TB - TestBench
UUT - Unit Under Test

— >
How to test? UUT protocol errors
How to verify? Environment errors
TB architecture
block diagram TB design
Components Coding
Concurrent statements
Interconnect signals

FM - Functional Model

BFM - Bus Functional Model

© Peeter Ellervee

co-simulation - 4

L] Department of Computer Engineering L]

Testbench elements
* UUT (any abstraction level)
* Set of models that emulate bus interfaces and bus transactions to the UUT
* A clock generator for the system

* A bus verifier to perform timing and protocol checks (+ reports)

Example — UART testbench

PROCESSOR
(BFM)

» DATA (7 downto 0)

controls

\i

interrupts

ity/frami
| g Prity/framing errors

clock

UART
(UUT)

Transmit data

Receive data
<l

-

UART

(BFM or
process)

7

© Peeter Ellervee

co-simulation - 5

L Department of Computer Engineering L

Result validation methodology

7 Testbench
))
I \

Testbench \

i \
v |

\ System to be /’ Resulting /’
N synthesized netlist /
N (RTL code) / (logic gates) e

~ -

~
T _//\

Simulation #1

" SYNTHESIS ™.

Comparison

~

.

-
~ - —

Simulation #2

© Peeter Ellervee

co-simulation - 6

III.III L] Department of Computer Engineering L]

Result validation methodology

* How to compare the simulation results?

* E.g., behavioral level modules vs. RT level modules

* Two simulations —> two signal traces

* At which moments to compare?
¢ Use clock flanks as “synchronization” points...
* But behavioral level description may be without the clock signal?!

* Single simulation but two units to be tested in the same testbench

* Two (or more) components of the same entity but with different architectures
¢ One of them is the reference model, a.k.a. the Golden Device
¢ Configuration declarations/specifications must be used
* Synchronization is still a problem
¢ The use of intelligent testbenches helps
¢ Transaction Level Modeling (TLM) approaches can be used

© Peeter Ellervee co-simulation - 7

III.III L Department of Computer Engineering L

Design refinement validation

* Large projects & multiple teams
@ ®) .
* one team — one module behavioral level
. T I 1 (T @)
¢ behavioral —=> RTL —> gate level X Module #1 Module #2
RTL
. . . . 1
* Validating intermediate steps? Module #1 ? Module #2 Module #3
* the same test bench for all teams gate level
¢ refining & replacing the module
under design Module #1 Module #2 Module #3
* interactive / intelligent testbenches Team #1 Team #2 Team #3
* test sequence extraction @ il @ teami,step! @ teamzstep2 @ final

* “Sub-testbench” for components
« stored test sequences + BFM (+ intelligent testbenches)

© Peeter Ellervee co-simulation - 8

L] Department of Computer Engineering L]

Co-simulation

* Manipulating simulated hardware with software

The goal of co-simulation:
To verify as much of the product functionality, hardware and software, as
possible before fabricating the ASIC.

In the past, co-simulation was adopted late in the process

» after hardware is deemed to be working and stable
* painful integration process, design flaw and could re-spin the silicon

Today, behavioral model simulation has matured and simulation tools have
improved to allow better simulation throughout the development cycle

¢ Rabi N. Mahapatra (Texas A&M University) http://codesign.cs.tamu.edu/teaching/csce617/

© Peeter Ellervee co-simulation - 9

L Department of Computer Engineering L

Embedded

SW
systems |
components Application |

(ON] EM CPU

1

1

Drivers

HW SW
ASIC(IP),
MPU ASIP(IP), DSP
\ “C
Ty Ay d HH¢ * i 4
Adaptor [Adaptor Adaptor

'+¢+ P HH

Communication Networks

4 '

SENSOR [AD D/A - ACTUATOR

© Peeter Ellervee co-simulation - 10

III.III L Department of Computer Engineering L]

* Design task

Concurrent Analysis of
design specification
of v
software HW / SW
partitioning

and HW development

SW development
hardware -~ T

HW / SW -
Import of kernels | . - » BIOS adaption
co-simulation

Design of Co-design Applications-
subcomponents module

Y Y

Hardware < Emulation | Communications-
integration on FPGA ™ software
. T Operation,
putioutpu egratio ergonomics

* Place & route

© Peeter Ellervee co-simulation - 11

III.III u Department of Computer Engineering L

Simulation components

* Hardware design: Memory, CPU or many ASICs each with one or more CPUs

* Simulation platform:

* PC or workstation. Everything exist as processes.

* Hybrid platforms with co-processors: off-load part of the load to co-processor,
peripheral and test benches remain in software.

* Emulation

* Special simulation environment with hardware
* runs whole design
e expensive
* 10% of real time
¢ FPGA arrays may be the hardware
* allow designers of large products to find a class of problem that cannot be found in simulation
e can attach to real devices

© Peeter Ellervee co-simulation - 12

L] Department of Computer Engineering L]

Algorithms

Event driven simulation (gate level simulation)
Most accurate - every active signal is calculated for every device as signals propagate
Each signal is simulated for its value and its time of occurrence
Excellent for timing analysis and to verify race conditions
Computation intensive and therefore very slow

Cycle-based simulation
Calculates the state of the signals at active clock edge
Suitable for complex design that needs large number of tests
~10 times faster than event driven simulation

Data-Flow Simulator
Signals represented as stream of values (without notion of time)
Blocks are executed when signals present at the input
Scheduler in the simulator determines the order of block executions
High level abstraction simulation used in the early stages of verification

© Peeter Ellervee co-simulation - 13

L Department of Computer Engineering L

Hardware requirements
Most simulators can handle behavioral models
Emulators require synthesizable codes
Some simulators may not handle HDLs

Cycle-based simulators can handle asynchronous designs at severe
performance penalty

Software requirements
Simulation environment has effects on application software

Programmers certainly need alternate version of application that do not have

user interface code or any references to chips that is not part of the simulation
environment

Reduce size of functionality and tables for speed

© Peeter Ellervee co-simulation - 14

L] Department of Computer Engineering L] %

Co-simulation methods

Co-simulation is a way to simulate at a very high level of abstraction

By creating a functional model that can be tested, system designers can make
sure the requirements are clear

Making a single model of both hardware and software functionality, the design
boundary between the two is effectively removed

Running model allows engineers to test different hardware/software
functionality splits (mapping) for performance and get some rough timing
estimates for various ideas

Functional model also allows engineers to find fundamental bugs in the design

© Peeter Ellervee co-simulation - 15

L Department of Computer Engineering L %

Co-simulation methods

POLIS (UC Berkeley)
Cadence's Cierto VCC is based on ideas from POLIS

Synopsy’s COSSAP and Eaglei tools

promise a way to check the implementation against the original algorithmic
specification for function equivalence

The standard method - running software directly on simulated hardware

it is implied that the CPU is part of the ASIC -->
CPU is simulated at the same level as other hardware

good when designing the CPU

waste of simulation results when using a core from the vendor

© Peeter Ellervee co-simulation - 16

L] Department of Computer Engineering L]

Heterogeneous co-simulation

* Network different type of simulators together to attain better speed

* Claims to be actual co-simulation strategy as it affords better ability to match
the task with the tool, simulates at the level of details.

* Synopsys’ Eaglei
* let HW run in many simulators
* let SW on native PC/workstation or in instruction-set-simulator (ISS)

* Eaglei tool interfaces all these

HW HW SW SwW

© Peeter Ellervee co-simulation - 17

L Department of Computer Engineering L

Heterogeneous co-simulation

* How about performance?

* Complex enough to describe any situation

* Proponents: since software is not running at hardware simulation speed,
the actual performance will be higher
* How fast is the software running when not doing hardware related task?
* If target CPU is not PC cross compiler should be used
* When software runs directly on PC/WS, it runs at the speed of PC/WS
* When software can not run directly as processes on WS, instruction set simulator (ISS)

is needed
* ISS interprets assembly language at instruction level as long as CPU details are not an issue

¢ ISS usually runs at 20% of the speed of actual or native processes

© Peeter Ellervee co-simulation - 18

III.III L] Department of Computer Engineering L]

Hardware density of heterogeneous simulation

* How much time software accesses hardware?
* Hardware density depends on applications

* Inloosely coupled CPU system, the block responsible for hardware
initializations has 30% instructions to access the hardware

* Intightly coupled system, every memory reference could go through simulated
hardware

* In general hardware density is important for simulation speed

* The base hardware and tools that communicate between the heterogeneous
environment can attribute to the speed also

* If simulation is distributed (rather common these days),
the network bandwidth, reliability and speed matters also

7

© Peeter Ellervee co-simulation - 19

III.III L Department of Computer Engineering L

Co-simulation strategies

* What you simulate is what you get

* Simulation is important for bug free test of the product
* The product schedule forces suitable strategies

* Due to decrease in feature size and increase in die size, more functionality are
pushed into hardware (could never happened in the past)

* Creates challenges for testing due to increased functionality
* Formal design methods, code reviews and code reuse have help
¢ Emulation engine is also of help but expensive

* For typical strategies, we need to know the thoroughness of testing

* Details of the surrounding environment
* If itinvolves health and safety, then detailed testing strategy is needed

© Peeter Ellervee co-simulation - 20

III.III L] Department of Computer Engineering L]

Co-simulation strategies

* Multi-pronged functional test strategy to build levels of assurance

* Basic initial tests prove functionality and complex tests are built upon working

* Any single test method has some coverage hole

* Event driven tests are closest to the real hardware but its slowness is coverage hole!
* Make balance between required test coverage and what might be avoided

* A simulation strategy might call for the functional specification to be written as
a functional model (co-design)

* Hardware designer could use event driven tests for hardware blocks

* Software designer could do basic debug using ISS or cross compiler and with fake
hardware calls
* For detailed functional blocks, software could interface
* After, completion of blocks, these can be dropped into the functional model for regression tests

© Peeter Ellervee co-simulation - 21

III.III L Department of Computer Engineering L

Co-simulation strategies

* Simulation speed

* Degrades when real components replace the functional blocks

* The simulation speed depends on simulation engine, the simulation algorithm, the
number of gates in the design, and whether the design is primarily synchronous or
asynchronous

* Low cost cycle based simulation is a good compromise
* Since it can not test physical characteristic of a design,
event driven simulator may be used in conjunction
* Cycle based simulators and emulators may have long compilation

* Hence, not suitable for initial tests that needs many changes.

* Eventdriven and cycle based simulators have fairly equal debugging environments, all
signals are available at all times

* Emulators on the other hand, require the list of signals to be traced to be declared at
compilation time

© Peeter Ellervee co-simulation - 22

L] Department of Computer Engineering L]

1111
Co-simulation strategies
* If the next problem can be found in a few microseconds of simulated time,
then slower simulators with faster compilation times are appropriate
* If the current batch of problems all take a couple hundred milliseconds, or
even seconds of simulated time, then the startup overhead of cycle based
simulation or even an emulator is worth the gain in run time speed
* How about the portability of test benches?
* Test after fabrication?
* Fast simulators are useful
* It is difficult to track down the hardware fault
© Peeter Ellervee co-simulation - 23
III.III L Department of Computer Engineering L

Co-simulation strategies

Determining which parts of the system software to run and how much software
debug can be done without the hardware

SW engineer need to go through the code and disable functionality that is too
costly for simulation, or if the sequence is important, find ways to reduce its
execution time

The degree of fidelity between the simulated environment and the real world is
both a requirement of simulation and a constantly shifting target throughout
the simulation effort

7

© Peeter Ellervee co-simulation - 24

L] Department of Computer Engineering L]

How to co-simulate?

How to simulate hardware components of a mixed hardware-software system

within a unified environment?

This includes simulation of the hardware module, the processor, and the software that

the processor executes

How to simulate hardware and software at same time?

What are various challenges?

Software runs faster than hardware simulator.

How to run the system simulation fast keeping the above synchronized?

Slow models provide detailed and accurate results than fast models.

How to balance these effects?
Use of different platforms for simulations.

© Peeter Ellervee co-simulation - 25

L Department of Computer Engineering L

Detailed processor model

Processor components (memory, datapath, bus, instruction decoder, etc.) are
discrete event models as they execute the embedded software

Interaction between processor and other components is captured using native

event-driven simulation capability of hardware simulator

Gate level simulation is extremely slow (~tens of clock cycles/sec), behavioral

model is ~hundred times faster

Most accurate and simple model

Gate level HDL ASIC model

Software (VHDL simulation)
A A

y

Backplane

© Peeter Ellervee co-simulation - 26

Department of Computer Engineering L]

Program
running
on host

Cycle based simulator

Software

executed by

ISA model

Bus model

* Less accurate but faster simulation model

A
A

Bus
(functional)
model in HDL

* Discrete-event shells that only simulate activities of bus interface without
executing the software associated with the processor

* Useful for low level interactions such as bus and memory interaction

* Software is executed on ISA model and provides timing information in clock
cycles for given sequence of instructions between pairs of 10 operation

ASIC model
(VHDL simulation)

Backplane

© Peeter Ellervee

co-simulation - 27

Department of Computer Engineering L

Instruction Set Architecture model

* No hardware mode

Program
running
on host

* ISA can be simulated efficiently by a C program

» Software is executed on ISA model
* Provides timing (clock) details of the co-simulation

* C program is an interpreter for the embedded software

* Can be more efficient than detailed processor modeling because internals of
the processor do not suffer at the expense of discrete-event scheduling

ISA model
C program

Software

A

y

ASIC model
(VHDL simulation)

A

A

Backplane

© Peeter Ellervee

co-simulation - 28

L] Department of Computer Engineering L]

Compiled model

Very fast processor models are achievable in principle by translating the

executable embedded software specification into native code for processor
doing simulation

Ex: Code for programmable DSP can be translated into Sparc assembly code for
execution on a workstation

No hardware, software execution provides timing details on interface to co-
simulation

Fastest alternative, accuracy depends on interface information

Software
Program A
running | €ompiled for ASIC model
on host native code ' :
of the host (VHDL simulation)
A
y \ Backplane
© Peeter Ellervee co-simulation - 29

L Department of Computer Engineering L

Hardware model

If processor exists in hardware form, the physical hardware can often be used
to model the processor in simulation

Alternatively, processor could be modeled using FPGA prototype (emulating)

Advantage: simulation speed

Disadvantage: availability of the physical processor

FPGA ASIC model

processor . .
(VHDL simulation)
7 K

Backplane
v A 4

© Peeter Ellervee co-simulation - 30

III.III L] Department of Computer Engineering L]

Combined HW/SW approach

* The host is responsible of having OS, some applications and
might have superset simulating environment (RSIM, SIMICS, SIMOID)

* Use of fast backplane (PCI) for communication

* Real processor or processor core in FPGA as hardware model, and
ASIC/FPGA for interface and interconnection for hardware modeler

* Good for fast complex architecture simulations including multiprocessor

Host with Proc::rssor R Infsg‘ia(n:ce
ISA simulator FPGA core in FPGA
A
A 4 y
PCl bus
© Peeter Ellervee co-simulation - 31

III.III L Department of Computer Engineering L

Domain coupling

The host that runs software is required to interact with hardware model(s)

Difficulties

* providing timing information across the boundaries
* coupling two domains with proper synchronization

Simulation at different levels of abstraction
* in the beginning of design process, hardware synthesis is not available
* use functional model to study the interaction between HW and SW
» after refinement(s), replace functional model with more detailed one(s)
* when detailed operation of hardware is verified, swap back to the higher levels

¢ this is to gain simulation speed
* The co-simulation environment should support different levels of abstraction

» off-the-shelf components — design is not a part of the current design process
* functional model is enough, no need to know internal details

© Peeter Ellervee co-simulation - 32

III.III L] Department of Computer Engineering L]

Master-slave co-simulation

* One master simulator and one or more slave simulators

* Slave is invoked from master by a procedure call

* The language must have provision for interface with different language

* Programming Language Interface (PLI)

¢ Difficulties:

* No concurrent simulation possible

* C procedures are reorganized as C functions to accommodate calls

HDL
HDL interface

|

C simulator Slave

Master

© Peeter Ellervee co-simulation - 33

III.III L Department of Computer Engineering L

Distributed co-simulation

* Software bus transfers data between simulators
using procedure calls based on some protocol

* Implementation of System Bus is based on system facilities

* Unix IPC or socket
* Itis only a component of the simulation tool.

* Allows concurrency between simulators

VHDL C program
simulator prog
VEC interface Interface to
to Software Bus Software Bus

A h

v A 4
Co-simulation (Software) Bus

© Peeter Ellervee co-simulation - 34

III.III L] Department of Computer Engineering L]

Synchronization and time in co-simulation

* In the case of a single simulator there is no problem for timing as
single event queue is managed for simulation

* With several simulators and software programs in the domain:
* hardware and software domain are using a handshaking protocol to keep their times
(clocks) synchronized
* signals (events) transferred from one side to the other should have attached a time stamp

* itis possible to use a loosely coupled strategy that allows the two domain to proceed
more independently

* if a signal is received with a time stamp lower than the current clock in the respective domain,
the respective simulator has to be back up

© Peeter Ellervee co-simulation - 35

III.III L Department of Computer Engineering L

Levels of co-simulation technology

Abstraction Speed Debug Model Turn- Soft- Hard-
level around | ware ware
Nano-second 1-100 Best Hardest Fast OK Yes
accurate
Cycle 50 - 1000 Excellent Hard Fast OK Yes
accurate
Instruction 2000 - OK Medium Fast Yes OK
level 20,000
Synchronized Limited by No processor None Fast Yes OK
handshake hardware state
simulation

© Peeter Ellervee co-simulation - 36

L] Department of Computer Engineering L]

Levels of Co-simulation Technology
Abstraction Speed Debug Model Turn- Soft- Hard-
level around | ware ware
Virtual Fast No processor None Fast Yes No
hardware or hardware
state
Bus functional | Limited by No processor Easier Fast No Yes
hardware state
simulation
Hardware 10-50 No processor | Timing only Fast OK Yes
modeler state
Emulation Fast Limited None Slow OK OK
© Peeter Ellervee co-simulation - 37
III.III L Department of Computer Engineering L
Co-simulation example — different languages
* A small system — CPU + memory CPU ROM| 1 0% |
e CPU - bus functional model ¢ ¢ _?_

* instruction memory (ROM) - functional model
» testbench - clock generator, reset circuitry and bus monitor

* All modules in VHDL

* memory content - constant array

* All modules in Verilog (SystemVerilog)

¢ memory content - dump file

* Co-simulation case
* CPU in VHDL - easier to manage causality (no danger of non-determinism)
* memory and testbench in Verilog — simpler code + memory content from file

* data types, module names, etc. — no changes... [:-)]

© Peeter Ellervee co-simulation - 38

i ;il L] Department of Computer Engineering ®
i

All in VHDL

-- Bus-functional model of the processor -- Functional model of the instruction memory (ROM)
library IEEE; library IEEE;
use IEEE.std logic_1164.all; use IEEE.std logic_1164.all;
use IEEE.std logic_arith.all; use IEEE.std logic_arith.all;
entity processor is entity memory is
port (address: out unsigned(3 downto 0); port (address: in unsigned(3 downto 0);
data: in unsigned(3 downto 0); data: out unsigned(3 downto 0));
clk, res: in bit); end memory;

end processor;
architecture FM of memory is
architecture BFM of processor is

begin -- FM
begin -- BFM process
process type mem_array is array (integer range <>)
variable pc, ir: unsigned(3 downto 0) := of unsigned(3 downto 0);
(others=>'0") ; constant memo: mem_array(0 to 15) :=
begin (701017, 701107, ”0010”, ~1110”,
address <= pc; ”0001”, ~0010”, ”0011”, ”0100”,
wait on clk until clk='1l"'; ”0101”, ~0110”, ~0111”, ”1000”,
if res='0' then pc := (others=>'0'); ”0101”, ”0110”, ”0010”, ”1010”);
else begin
ir := data; wait on address;
if ir(3)='1' then pc := ir(2 downto 0) & '0'; data <= memo (conv_integer (address)) ;
else pc :=pc + '1l'; end if; end process;
end if; end FM;
end process;
end BFM;
© Peeter Ellervee co-simulation - 39
Il‘lll‘" L Department of Computer Engineering L
1111

All in VHDL

-- architecture bench of test is
-- Test-bench and bus monitor signal clk, res: bit := 'l';
- signal a_bus, d_bus: unsigned(3 downto 0);

library IEEE; component processor
use IEEE.std logic_1164.all; port (address: out unsigned(3 downto 0);
use IEEE.std logic_arith.all; data: in unsigned(3 downto 0);
clk, res: in bit);

use STD.textio.all; end component;

component memory
entity test is port (address: in unsigned(3 downto 0);
end test; data: out unsigned(3 downto 0))

end component;

begin -- bench

clk <= not clk after 5 ns;
res <= '0', 'l' after 22 ns;
run 220 ns

>

5 ns: 0000 0101 CPU: processor port map (a bus, d bus, clk, res);

15 ns: 0000 0101 MEM: memory port map (a_bus, d_bus);

25 ns: 0000 0101

35 ns: 0001 0110 process -- bus monitor

45 ns: 0010 0010 variable out buff: line;

55 ns: 0011 1110 variable data_buff: bit vector(3 downto 0) := ”0000”;
65 ns: 1100 0101 begin

75 ns: 1101 0110 wait on clk until clk='0"';

e write (out_buff, now); write(out buff,string'(”: ”));

155 ns: 1001 0110 data buff := to_bitvector(std_logic_vector(a_bus));

165 ns: 1010 0111 write (out_buff,data_buff); write(out_ buff,string'(” ~));
175 ns: 1011 1000 data_buff := to_bitvector(std logic_ vector(d_bus)) ;

185 ns: 0000 0101 write (out_buff,data_buff); writeline (output,out buff);
195 ns: 0001 0110 end process;

205 ns: 0010 0010 end bench;

215 ns: 0011 1110

© Peeter Ellervee co-simulation - 40

L] Departm

ent of Computer Engineering L]

// Bus-functional model of the processor
‘timescale 1 ns / 1 ns

module processor (address, data, clk, res);
output [3:0] address; reg [3:0] address;
input [3:0] data;
input clk, res;

reg [3:0] pc, ir;

initial begin pc=0; address=0; ir=0; end

always begin

address=pc;
@ (posedge clk);
if (res==0) pc=0;
else begin
ir=data;
if (ir[3]==1) pc={ir[2:0],1'b0O};
else pc=pc+l;
end
end
endmodule
> run 220 ns
5: 0000 0101
15: 0000 0101
25: 0000 o101
35: 0001 oO110
45: 0010 0010
195: 0001 0110
205: 0010 o0010
215: 0011 1110

All in Verilog

// Functional model of the instruction memory (ROM)
‘timescale 1 ns / 1 ns

module memory (address, data);
input [3:0] address;
output [3:0] data; reg [3:0] data;

reg [3:0] memo [0:15];
initial $readmemb (”co-memo.txt”,memo) ;

always Q@ (address) data=memo[address];
endmodule
@o

0101

0110 // Test-bench and bus monitor

0010 “timescale 1 ns / 1 ns

1110

0001 module test;

0010

0011 reg clk, res;

0100 wire [3:0] a_bus, d _bus;

0101 - -

0110 initial clk=1;

0111 always #5 clk=!clk;

1000 initial begin res=0; #22 res=1; end

0101

0110 .
processor CPU (a_bus, d bus, clk, res);

ggig memory MEM (a_bus, d bus);

always @ (negedge clk) // bus monitor
$display(”%4t: %b %b”,$time,a_bus,d bus);
endmodule

© Peeter Ellervee

L Departm

co-simulation - 41

ent of Computer Engineering L

 _ wave - default
Eile Edit Yiew

Insert Format Tools MWindow

Waveforms

B M K|

1100
0101

File Edit %iew Insert Format Tools Window

1110 J07071 40710 |0

0010

1010
11 1110 17111

010 0011 J0100 j01071 {0110 J0117

010 Q0071 (0700 0707) 10 0101 40710 {0010

14011]
010 J0011 J0100 40101 J0110 30111 j1000 ;0101 40110

0101 J0110 j0111
0011 j0100

0001 j0010 00

0010 joot1 |

0010 j1110)

| B“H @I% cK:" =} Mm_ By ?@Eﬂ

1110 40101 30110 |0

040 011040

101 J0110 J0111 1010 1011 0010 0011)

010 J0011 }0100 J0101 {0110 joi11 10 0101 40110 {0010 41110)

0o oo

11071 {1110 41711 {0100 {0107 {0110 0111

10 1010

|0nsto 231 ns | Mow: 2z0ns Delta; 4

© Peeter Ellervee

co-simulation - 42

L] Department of Computer Engineering L]

Co-simulating VHDL & Verilog

[¥] ModelSim SE PLUS 6.0a

BE B

File Edit View Format Compile Simulate Add Tools Window Help
O@F @@ | & @00 (W8 % | &K e || | w0 G B W | 5 e L 5w || N B Q] Al || @
4 o0 ns 4 (gl [(4 mﬁlgﬂﬂ“ Contains: »

Workspace —————— + & %/ | Objects + &1 %] g} default
*|Name |Type 1

work Library “ clk

{] memory hodule “res MW@ ftesta bus |1100 [oooo

g&prucessur Entity -4 a_bus

1&] bfm Architectu

1] test hodule
vitalz000 Library
ieee Library
modelsim_lib Library 00 joooo [Jooo
stdl Library
std_develope... Library
Synopsys Library
verllog Library
R = ‘ Ansto 125 ns | Mow: 220 ns Delta: 4
| M Liorary [§G sim | = Files 42 1 mlwave | <2
Transcript H A

165 1010 0111 =
1750 1011 1000
185 0000 0107
185 0001 0110
205 0010 0010

2190 0011 1110
VSIM 128 7
| MNow: 220 ns Delta: 4 ‘sim:ﬂ’test A

* CPUiInVHDL; memory & testbench in Verilog

© Peeter Ellervee co-simulation - 43

RRI . .
1111 L] Department of Computer Engineering N
T LT

TTU1918

Co-simulation example #2 — CPU & software

* Power consumption analysis of ARM-like processor

* Applications written in C Synopsys VCS
Verilog

* Trimaran cross-compiler Memory ARM-like
model CPU model
(Verilog) (RTL Verilog)

* The main problem — bus

. . . A A
are the applications running correctly?
[]

An automated setup is needed — compiler and linker, plus OS kernel

* K. Puttaswamy, K.-W. Choi, J. C. Park, V. Mooney, A. Chatterjee, P. Ellervee, “System
Level Power-Performance Trade-Offs in Embedded Systems Using Voltage and
Frequency Scaling of Off-chip Buses and Memory.” The 15th International Symposium
on System Synthesis (1ISSS’2002), pp.225-230, Kyoto, Japan, Oct. 2002.

© Peeter Ellervee co-simulation - 44

L] Department of Computer Engine

ering L]

Memory mapped I/O like interfacing

monitor in Verilog to track memory writings

Additional application SW

scripts for compiler and linker to build the right memo
OS kernel —

I/0 routines in C, boot-strap & system call

Additional simulator SW

OS kernel system calls <--> Solaris I/O routines

(~750 lines of C code)

Co-simulation Example #2

(~3000 lines of C & assembly code)

ry mapping
in ARM assembly code

Solaris Synopsys VCS
C ' Verilog
= , |
@i o | 0S 18| ppy Memory ARM:-like
%\)})\ L‘ » model | 5 [«—— model CPU model
(\({5\\4\ (C) ! IS : (Verilog) (RTL \‘/erilog)
1 i bus v
© Peeter Ellervee co-simulation - 45
III.III u Department of Computer Engineering]
Co-simulation Example #2
Solaris Synopsys VCS CPU bootstrap code (assembler)
| ¢ ' Verilog .section .boot, ”"ax”
os 8| p M ARM-ik ;
| model | € (21, model || | CPU model .align 3
©) ‘g ‘ (Verilog) (RTL Verilog) . global _boot_
| ‘ bus . type _ _boot__ ,%function
__boot___ @ Reset
b .start
b .error
Memory access monitor (Verilog) e
. .section .syscall, "aw”
// Monitor .align 3
reg halt cmd; .global _ syscall data _
always @ (posedge MMnWR) . type __syscall data__,%object
begin __syscall data__
repeat (3) @(negedge GCIK); .word 0, 0, 0, 0, 0, 0, 0, errno
halt_cmd=0; $syscall(halt_cmd) ; _section .text
if (halt_cmd!=0) #10 $finish; .align 3
end .start:
mov RO, #16
msr cpsr_all, RO
mov sp, #0x020000
bl main Q@ “main();”

© Peeter Ellervee co-simulation - 46

L] Department of Computer Engineering L]

(I
Co-simulation Example #2
int fputc(int c, FILE *stream) Function “fputc” (C)
{
__syscall data__ [0] = __ SYSCALL_STDIO_FPUTC;
__syscall data__ [1] = c;
__syscall data__ [2] = (unsigned int)stream;
return __ syscall_ioproc__ ();
}
Memory access (assembler)
.align 3
.global _ syscall ioproc__
. type __syscall ioproc__,%function
__syscall ioproc__:
1dr r0, .syscall.errno @ flush & invalidate ”errno”
stcl pl5, cO0, [xO, #0]
mcr pl5, 0, r0, c7, c6, 1
nop @ a flush/invalidate problem?!
1ldr r0, .syscall.data @ location of parameters
stcl pl5, cO0, [xO, #0] @ flush & invalidate
mcr pl5, 0, r0, c7, c6, 1 Q cache-line (section .syscall)
1ldr r0, [r0, #4] @ return code
mov pc, 1lr
© Peeter Ellervee co-simulation - 47
III.III u Department of Computer Engineering]

Co-simulation Example #2

int ReadMemory (const int addr) {
int i,wd,value=0;
for (i=0;i<SYSMEM COUNT;i++) {
wd=acc_getmem_int(mem[i],addr/SYSMEM BYTES,SYSMEM WD_BEG,SYSMEM WD_LEN) ;
value=(value<<SYSMEM BITS) | (SYSMEM MASK&wd) ;
}
return value;
}
static int SysCall fputc(void) {
FILE *fp; int c,ret;
if ((fp=FilePointer (ReadMemory (syscall_ addr+2*SYSMEM BYTES) ,STREAM WRITE))==NULL)
{ pli_errno=errno; return EOF; }
c=ReadMemory (syscall_addr+SYSMEM BYTES) ;
ret=fprintf (fp,”%c”,c); fflush(fp); pli_errno=errno; return ret==1?c:EOF;
}
void syscall pli() {

int exit_code,return_code=0; unsigned int op_code;

/* Setting parameters */

DesignTimeScale() ; syscall addr=SYSCALL_ADDR; SetUpMemory () ;

op_code=ReadMemory (syscall addr); /* Executing the operation */

switch (op_code) {
case _ SYSCALL _NOP: return;
case __ SYSCALL STDIO_FPUTC: return_code=SysCall fputc(); break; /* "stdio” f-ns */

}

WriteMemory (pli_errno_addr, pli_errno);

WriteMemory (syscall addr+SYSMEM BYTES, return_code) ;
WriteMemory (syscall addr, _ SYSCALL_NOP) ;

© Peeter Ellervee co-simulation - 48

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

