HIGH LEVEL SYNTHESIS FOR FPGAS:
EXPLOITING PIPELINE PARALLELISM

The Architecture Landscape

* The world of Transistors has evolved significantly

7
6
5

10*

3

10

10 ¢

10" +

107 ¢

Intel 48-Core NVIDIA Transistors
AMDOA;;tg?org Prototype Kepler GPUH/'? (thousands)
_Intel i A ,/ Parallel
Pem4 i ; B A Performance
AR ¢ ’ Sequential
el | " Performance
I DEC Alpha |
21264 |- o/
L e 24 « Frequency
MIPS R2K x» (MHz)
2 Typical Power
(Watts)
~—~__Number of
Cores
M' ‘ ‘ 'homog‘e:neous heterqgeneous
1975 1980 1985 1990 1995 2000 2005 2010 2015
Data partially collected by M. Horowitz abonte, O. Shacham, K. Olukotun, L. Hammond

18/03/19

MultiCores . ==
P Exponential increase in performance
— Improved organization

— Increased clock frequency

> Increase in Parallelism

— Pipelining

— Superscalar

— Simultaneous multithreading (SMT)
* Diminishing returns

— More complexity requires more logic CTH AT

— Increasing chip area for coordinating and signal transfer logic
¢ Harder to design, make and debug

H o care [1515 :
;s

Memory Subsystam

System
‘Agent
core core core core Display <
Source: https://en.wikichip.org/wiki/intel/microarchitectures/
coffee_lake#tEntire_SoC_Overview_.280cta.29
[ssice $Siee | sl | L3sSles pcie
Gen9.5 [3
| | tssice L33sice 7 L35 Slice 135 slice
8 B 5 ' ~ —
@ Controller
core core core core

Architecture of a CUDA-capable GPU

Two streaming multiprocessors form a building block

Each has a number of streaming processors that share control logic
and instruction cache.

Host Each GPU comes with multiple gigabytes of DRAM (global memory).
Offers High bandwidth off-chip, though with longer latency than typical system memory.
Input A: bl High bandwidth makes up for the longer latency for massively parallel applications

G80: 86.4 GB/s of memory bandwidth plus 8GB/s
Y P!
Thread Execution Manager up and down 4Gcommunication bandwidth with CPU

Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data

Cache Cache Cache Cache Cache Cache Cache Cache
- Toxture |-|-Jif-Hexture [[l Texture -l Texture |- - Texture |-|- I+ Texture -l H rexture |-|- Il - Texture -

A good application runs 5k to 12k threads. CPU support 2 to
8 threads.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 ECE 408, University of lllinois, Urbana-Champaign

18/03/19

GPUs

* Throughput optimized multicore
— Performs badly on sequential code

For i = 0 to n-1 do:
X[i] « a * X[i]

Launch n threads:
X[tid] « a * X[tid]

* Sources of parallelism
— Instruction Level [X-a*x |

_ add r3 « rl, r2
Thread Level L r0 e ro. r1:| Parallel

— Data Level sub rl « r3,7r0

vadd re<a,b

Q

al a2 3
Thread 1 Thread 2 + o+ +

bl b2 b3
(a mi1) Parallel

r1 r-2 r3

Field Programmable Gate Arrays (FPGA)

Address (inf0-4)) |__out _
00000 0
00001 1

11111 0

¥ Genera-Purpose l0s (LVDS, Memary interfaces)
1]
| ||

—=—————— Core Logic Fabric

1} Variabie-Precision
BRS—— = psP Bocks

] M20K nternal
Memory Blocks

= Fractional PLLs

Aised

Embedded HardCopy Block:
] PCI Express Gen3, Gen2, Gen!

Hard P Per Transceiver:

3GI6G PCS, 106 Ethemet PCS,
] Interlaen PCS

11

mE 1|

I-Purpose I0s (LVDS, Memory interfaces)

—— High-Speed
Serial Transcelvers

4

18/03/19

High-Performance FPGA Summaryx

10 TF single precision

6,840 DSPs (3.1 TF single
prec.)

Intel Stratix 10 Virtex Ultrascale NVidia GPU
14 nm Intel Tri-Gate 16 nm FinFET 12 nm
1 GHz ~600 MHz 1455 MHz

5,120 cores (15.7 TF single
prec.)

5.5M Logic Elements

2.5M Logic Elements

CUDA programming

4-input LUT, register, carry,
etc.

1,182,000 5-input LUTs

On-chip memory:

Block RAM: 28.6 MiB

2,364,000 FFs

Registers: 20.8 MiB

Hardened DRAM controller
DDR 4

Block RAM: 9.1 MiB

L1/SM: 7.7 MiB

Various options for memory

L2 Cache: 6.1 MiB

Hyper Flex Interconnect with
Regs.

TDP: 125W (estimated)

TDP: 95 W
(Amazon F1 power limit)

TDP: 300W

Programmability

Ease of Programmability vs. Efficiency

— CPU+GPU

* CGRAs

— FPGAs

Sof’Ewa re

* Modern Super computers

Hardware
1

L

1 I

‘ cPU | GPU W Hybrid] FPGA] AsIC »

)

T

Reprogrammable

Aduaidiye uodl|is

18/03/19

What dominates HPC

* GPUs
— Productivity: CUDA enabled GPGPU without hacking the @@ \
graphics pipeline A
— Hardware support: Tesla line with ECC, double/half \V
precision
* FPGAs

— Productivity: steep learning curve of hardware design,
unpolished tools

— Hardware support: low bandwidth, no native floating poin(}@‘@ \\‘
units e ,,/‘
* Recent Developments
— OpenCL, HLS

— Intel Startix X and HBM

How do we get Performance

* Massively parallel Computation
— 250 MHz is often adequate
— Lower power dissipation
* Parallelism
— Depth and width of computations performed on the input data
— Tradeoff between logic, buffering, and time
— More scope for optimizations
* More optimal data movement
— Hardwired more often
* Lots of registers
— Very efficient Pipelines can be easily set up

18/03/19

Programming FPGAs

* Spatial Register Transfer Logic (RTL) Programming

— Hardware description languages
* Register Transfer Logic (RTL)

— VHDL, Verilog, System C, SystemVerilog
* Very verbose and very low level
— Every Cycle accounted for

* High-level synthesis

— Input C/C++/OpenCL is transformed to the spatial paradigm

— Lift programming from the bit level to the word/datatype level
* Xilinx and Intel both offer a C/C++ and an OpenCL tool

Naneet al.: “A Survey and Evaluation of FPGA High-
Level Synthesis Tools”, Oct. 2016)

impul
Bambu ’mf?!",.sg bluespec Microsoft Catapult

3 Ls of Modern Computing
* Spatial Locality

* Temporal Locality
* Control Locality

& Ta o Tar]

[Freercs | Prcaics Jenvaics Jenvaice]
[—+{Rewver [revver [renper] REPEL |

http://gameprogrammingpatterns.com/data-locality.html

18/03/19

Spatial Locality

* Spatial: having to do with space -- or in this case, proximity
of data

* Spatial locality: the principle that data near the data being
accessed now will probably be needed soon

* |If data item n is useful now, then it’ s likely that data item
n+1 will be useful soon

— Data array a accessed with stride 1
— Instructions are accessed in sequence

sum=0

for (i=0;i<=n;i++)
return sum;

Temporal Locality

* Temporal = having to do with time

* Temporal locality: the principle that data being accessed
now will probably be accessed again soon

Useful data tends to continue to be useful

— Data variable sum referenced in each iteration
— Same instructions executed in each iteraion

sum=0 ; ;
sum += afil;

return sum;

18/03/19

Control Locality

Load-store (“von Neumann”)

x=a+b

Energy per instruction: 70pJ

Memory

Source: Mark Horowitz, 1SSC'14

Static Dataflow (“non von Neumann”)

Energy per operation: 1-3pJ

Control Locality

Ida,rl
Id b,r2

y=(a+b)*(c+d)

70 pJ
stx,r3
add r3,r1,r2 j *_

Memory

High Level Synthesis

HLS Coding -

intc=a+b

RTL Coding

out=in+1

always @ (posedge clk)
if (start) begin
out <= in + 1;
end

; dvofimy
B .
T .
\
- o Coy
f \
!
\
Lkdal
S
-
U FOT I W »
~ | |
' LT =
\ y 3
N -
\ \
\
W= D

18/03/19

18/03/19

HLS

6362 5251 47 0

Input reg Input reg

floatc=a +b

6362 5251 47 0

1 cycle

1 cycle

sapAIq

expl exp3 exp2 expd
n2 n2 Output reg
bt/
swapl swap2\ Mux8,
15 11
expl exp2__mantissal]

HLS Pipelines

float c=a +b ,
nput reg Input reg

Pipelines are the Key in HLS 1 cycle

Reg

- 1 cycle

Reg

LOGIC

s9ppha 1

Latency (L) -

f—;\

Implies L—1

pipeline stages

l-.-

ops

“EEEn
|||

cycles

Pipelines Key to Performance
loat c=(a+b)*(a-b e - .
-b U (a+b)*(e-b) * Initiation interval
— In addition to latency (L), we introduce
the property initiation interval
L =13 cycle! * “UI”, here |
— No. of cycles before we can accept
new inputs
*>Implementation 1 can accept all 4
inputs

5
2

o

-

[0}

15

<

[}

+

X

Q

<

=3

0]

s3PA) pT=1

— L=13cycles
— I=1cycle 3 op/1 cycle

\ — 2adds, 1 mult
*~Implementation 2

— L=14cycles

L] — 1=2cydles 3 0p/2 cycle
ops m_’...- — 1ladd, 1 mult
HEEEEN Throughput is halved! (@

cycles

Pipelines --- with Loops

for(inti=0;i<N;++i){
#pragma HLS PIPELINE II=1
Jf[l] = (a[i] + b[i]) * (a[i] - b[i]);

Loop Body
L=13, lI=1

literation |13 +1=14 cycles
10 iterations |13 + 10 =23 cycles
Niterations |13 + N ¥gles

N

Loop iterations affect the runtime additively,
regardless of body content

18/03/19

10

Pipelines --- with Loops

for (inti=0;i<N;++i){
#pragma HLS PIPELINE [1=2
c[i] = (a[i] + b[i]) * (a[i] - b[i]);
)

S

o Loop Body
Literation ~ 14+2=16 cycles L=14, lI=2

10 iterations 14+ 20 =34 cycles
Niterations 14+ 2N cycles

L, =L+II*N

Initiation interval paid at every iteration

Lets Look at How FPGAs help/Suffer

Initiation Interval essentially | v, ..,
results in a Pipeline Stall #pragma HLS PIPELINE [[H=1=3

— So why not always have lI=1
Intra-iteration:
— Multiple accesses to the same

arr

Interface Interface
Inter-iteration
— Data dependencies 2

Low throughput requirements
— input only received every 16 cycles

res[i] = 0.3333 * (arr[i-1] + arr[i] + arr[i+1]);

18/03/19

11

FPGA Memory

Distributed RAM
(LUTs)

32 Bit Register

Insert Registers

for(inti=1;i<N-1; ++i){

res[i] = 0.3333 * (arr[i-1] + arr[i] + arr[i+1]);

/
So How is relevant to HLS and FPGAs

Stage 1 4Byte =32 bit - 1

D=1
Stage 2 W32
Stage 3

(L=21,1=1)

Dgan=1024

Weam=32

4096 Byte = 32 bit - 1024

Memory: depth (D) and width (W)

18/03/19

12

Transformations

* Pipeline-enabling transformations * Optimization Goals
* Transposition — Perfect Pipelining
* Interleaving o |=1
* Cross-input pipelining « Maximum Throughput
. |Cn\,:::rllilt?f)uffering — Scaling/Folding
* Pipelined loop flattening/coalescing * Fold N by scaling up the
« Pipelined loop fusion parallelism of the design
* Scalability transformations — Saturation N
. i7ati e Saturate pipelines for the
. XZ;T&Q::::)” majority Efpthe runtime
+ Streaming dataflow — No Stalls
* Tiling

e Secondary transformations
* Memory access extraction
* Memory oversubscription
* Memory striping
* Type demotion

Dependences

* Scalar Variables * Loop Variables

— True Dependence .
.« A= fori=2,5

© =A afi] = afi] + 3
— Anti Dependence

« =A

. A:
— Output Dependence

. A:

. A:

— Input Dependence

18/03/19

13

Dependence in Loops

Array Anti-dependence

fori=2,5
afi-2] = afi] + 3 write

read

Array True-dependence

read

fori=2,5
afi] = afi-2] + 3

write

Iteration Space

i2
Iteration is represented as coordinates in

foril =0,5 . .
iteration space

fori2=0,3
alil,i2] = 3

Loop Carried Dependence

There exists a dependence from statement S1 to S2 in a common nest of
loops iff there exist two iteration vectors i and j such that

— 1<jori=jand there is a path from S1 to S2 in the body of
the loop

— S1 accesses memory location M on iteration 1 and S2 accesses
M on iteration |

— one of these accesses is a write
— Loop Carried Dependence
* Statement S, has a loop-carried dependence on statement S, if and
only if S, references location M on iteration i, S, references M on
iteration j fori=2,5

afi+1] = fJi] + 3
Ait1]=ali]

18/03/19

14

Iteration Space Transposition

* Modified Matrix Multiplication
* C=A*B+C
— Multiplication of elements of A and B can be pipelined

— Addition on Line 8 requires the result of the addition in
the previous iteration of the loop

ifor (int n = @; n < N; ++n) ifor (int n = 0; n < N; ++n) {
float acc[P]; // Uninitialized
for (int m= @; m < M; ++m)
auto a = A[n][m];
#pragma PIPELINE
for (int p = @; p < P; ++p) {
auto prev = (m == @) ? C[n][p] : acclpl;
acc[p] = prev + a * B[ml[pl; }
for (int p = @; p < P; ++p)
0 C[nIlp] = acclpl; 3}

2

3 for (int p=0; p<P; ++p) {
4 auto acc = C[n1lpl;

5 #pragma PIPELINE

6 for (int m = @; m < M; ++m)
7 // Loop-carried dependency
8 acc += A[n][m] * B[m][pl;
9

2
3
4
5
6
7
8
CCn1lp] = acc; 9

0}

Vectorization

* Exploit SIMD parallelism with HLS
— Partially unrolling loop nests in pipelined sections
— Can be directly applied to the inner loop

Vectorization by strip-mining

ldv vr2, addr2 2 #pragma UNROLL // Fully unroll inner loop

addv vr3, vrl, vi2 5 for (int w= 0; w < W; ++w)
stv vr3, addr3

times] Id r2, addr2

add r3, r1, r2 C[i] = a[l] + b[l],‘ times

Idv vr1, addr1 ifor (int 1 = 0; i <N/ W; ++i)
st r3, addr3

4 CLi*W + w] = A[i*W + w] * BL[i*W + w];

n [ld r1, addr1 fOV (i:{),' l<LE]V, l.++) w4

Vectorization by partial unrolling
32 bits

32 bits
Y1
[x]]

Register File Scalar Unit

1#pragma UNROLL W // By factor W
ofor (int i = 0; 1 < N; ++i)
3 C[il = A[i] * B[il;

Unit

L [=]=1=]

t 1t/

18/03/19

15

Type Demotion

* Demote Data Types
— Less expensive alternatives

— Must meet precision Requirements
* Reduce resource and energy consumption
* Bandwidth requirements
* Operation latency

— Use less Resources
e Compute Bound
» Floating point to fixed point
» Use Native Data types (16 bit for Xilinx)
e Bandwidth Bound

» Performance improves by the the same factor that the size of
the data type can be reduced

* Latency Bound
» Floating point ops = multiple cycles: Integer ops—> 1 cycle

Software Transformations In HLS

CPU transformation In HLS

Loop interchange [2, 36] Used to resolve loop carried dependencies throughout Section 2.
Strip-mining [77] Central component of many HLS transformations, including
Loop tiling [36, 40] accumulation interleaving (Section 2.2), vectorization (Section 3.1),
Cycle shrinking [56] replication (Section 3.2), and tiling (Section 3.4).

Loop distribution/fission [35, 36] | Useful for separating differently scheduled computations to allow
pipelining (see Section 3.3).

Loop fusion [36, 79, 83] Used for merging pipelines (see Section 2.7).

Loop unrolling [18] Essential tool for scaling up performance by generating more com-
putational hardware (Section 3.1 and 3.2).

Software pipelining [39] Used by the HLS tool to schedule loop bodies according to the

interdependencies of operations.

Loop coalescing/flattening [55]
Loop collapsing

Used to save pipeline drains in nested loops (Section 2.6).

Reduction recognition Prevent loop-carried dependencies in accumulation codes (Sec-
tion 2.1 and 2.3).

Loop idiom recognition Relevant for HLS backends, for example to recognize sliding-
window buffers (Section 2.5) in Intel OpenCL [72].

Procedure inlining Required to pipeline code sections with function calls (Section 2.4).

Procedure cloning Every occurrence of a function is always specialized to all variables
that can be statically inferred.

Loop unswitching [17] Often the opposite is beneficial (see Section 2.6 and 2.7).

Loop peeling Often the opposite is beneficial to allow coalescing (Section 2.6).

Graph partitioning Streaming is central to hardware algorithms (Section 3.3).

SIMD transformations Covered in Section 3.1.

18/03/19

16

Reference

* Paper Reference

* Transformations of High-Level Synthesis Codes for High-
Performance Computing

— https://arxiv.org/abs/1805.08288

* Slides are mostly derived from
* https://spcl.inf.ethz.ch/Teaching/2018-sc/

Interleaving accumulations to eliminate the loop-carried dependency

ifor (int 1 =0; i <N; ++i) {
Vec<double, 3> acc;
Vec<double, 3> s@ = s[i];

2
3
4
5
6
7 #pragma PIPELINE
s for (int j = @; j < N; ++j)

9 acc += Force(se, s[jl, m[j1);
10

1 v[i] = v[i] + dt * acc;

12 s[i] = s0 + dt x v[i]; }

ifor (int i =0; i < N/ K; ++i) {

2 Vec<double, 3> acc[K];

3 Vec<double, 3> s0[K];

4 for (int k = 0; k < K; ++K)

5 so[k] = s[i*K + kJ;

¢ for (int j = 0; j < N; ++j)

7 #pragma PIPELINE

8 for (int k = 0; k < K; ++j)

9 acc[k] += Force(so[k], s[j1, m[jl);
10 for (int k = @; k < K; ++K) {

1 vli*K + k] += dt * acc;

12 s[ixK + k] += dt * v[i*xK + k1; }}

(a) N-body code with loop-carried dependency.

(b) Strip-mine outer loop to interleave K accumulations.

18/03/19

17

