
18/03/19	

1	

HIGH	LEVEL	SYNTHESIS	FOR	FPGAS:			
EXPLOITING	PIPELINE	PARALLELISM	

	

The	Architecture	Landscape	
•  The	world	of	Transistors	has	evolved	significantly	

18/03/19	

2	

MultiCores	
•  Exponential	increase	in	performance	

–  Improved	organization	
–  Increased	clock	frequency	

•  Increase	in	Parallelism	
–  Pipelining	
–  Superscalar	
–  Simultaneous	multithreading	(SMT)	

•  Diminishing	returns	
–  More	complexity	requires	more	logic	
–  Increasing	chip	area	for	coordinating	and	signal	transfer	logic	

•  Harder	to	design,	make	and	debug	

Source:	https://en.wikichip.org/wiki/intel/microarchitectures/
coffee_lake#Entire_SoC_Overview_.28octa.29	

Architecture	of	a	CUDA-capable	GPU	

©	David	Kirk/NVIDIA	and	Wen-mei	W.	Hwu,	2007-2010	ECE	408,	University	of	Illinois,	Urbana-Champaign	

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture Texture Texture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

Two streaming multiprocessors form a building block
Each has a number of streaming processors that share control logic
and instruction cache.
Each GPU comes with multiple gigabytes of DRAM (global memory).
Offers High bandwidth off-chip, though with longer latency than typical system memory.
High bandwidth makes up for the longer latency for massively parallel applications
G80: 86.4 GB/s of memory bandwidth plus 8GB/s
up and down 4Gcommunication bandwidth with CPU

A	good	application	runs	5k	to	12k	threads.	CPU	support	2	to	
8	threads.			

18/03/19	

3	

GPUs	
•  Throughput	optimized	multicore	

– Performs	badly	on	sequential	code	

•  Sources	of	parallelism	
–  Instruction	Level	
– Thread	Level	
– Data	Level	

Field	Programmable	Gate	Arrays	(FPGA)	

18/03/19	

4	

High-Performance	FPGA	Summaryx 		
Intel Stratix 10 Virtex Ultrascale NVidia GPU

14 nm Intel Tri-Gate 16 nm FinFET 12 nm
1 GHz
10 TF single precision

~600 MHz
6,840 DSPs (3.1 TF single
prec.)

1455 MHz
5,120 cores (15.7 TF single
prec.)

5.5M Logic Elements 2.5M Logic Elements CUDA programming
4-input LUT, register, carry,
etc.

1,182,000 5-input LUTs On-chip memory:

Block RAM: 28.6 MiB 2,364,000 FFs Registers: 20.8 MiB

Hardened DRAM controller
DDR 4

Block RAM: 9.1 MiB L1/SM: 7.7 MiB

Various options for memory L2 Cache: 6.1 MiB
Hyper Flex Interconnect with
Regs.

TDP: 125W (estimated) TDP: 95 W
(Amazon F1 power limit)

TDP: 300W

Ease	of	Programmability	vs.	Efficiency	
•  Modern	Super	computers	

– CPU+GPU	
•  CGRAs	

– FPGAs	

18/03/19	

5	

What	dominates	HPC	
•  GPUs	

–  Productivity:	CUDA	enabled	GPGPU	without	hacking	the	
graphics	pipeline	

–  Hardware	support:	Tesla	line	with	ECC,	double/half	
precision	

•  FPGAs	
–  Productivity:	steep	learning	curve	of	hardware	design,	
unpolished	tools	

–  Hardware	support:	low	bandwidth,	no	native	floating	point	
units	

•  Recent	Developments	
–  OpenCL,	HLS	
–  Intel	Startix	X	and	HBM	

How	do	we	get	Performance	
•  Massively	parallel	Computation	

–  250	MHz	is	often	adequate	
–  Lower	power	dissipation	

•  Parallelism	
–  Depth	and	width	of	computations	performed	on	the	input	data	
–  Tradeoff	between	logic,	buffering,	and	time	
– More	scope	for	optimizations	

•  More	optimal	data	movement	
–  Hardwired	more	often	

•  Lots	of	registers	
–  Very	efficient	Pipelines	can	be	easily	set	up	

18/03/19	

6	

Naneet	al.:	“A	Survey	and	Evaluation	of	FPGA	High-
Level	Synthesis	Tools”,	Oct.	2016)	

Programming	FPGAs	
•  Spatial	Register	Transfer	Logic	(RTL)	Programming	

–  Hardware	description	languages	
•  Register	Transfer	Logic	(RTL)	

–  VHDL,	Verilog,	System	C,	SystemVerilog	
•  	Very	verbose	and	very	low	level		

–  Every	Cycle	accounted	for	
•  High-level	synthesis	

–  Input	C/C++/OpenCL	is	transformed	to	the	spatial	paradigm	
–  Lift	programming	from	the	bit	level	to	the	word/datatype	level	

•  Xilinx	and	Intel	both	offer	a	C/C++	and	an	OpenCL	tool	

3	Ls	of	Modern	Computing	
•  Spatial	Locality	
•  Temporal	Locality	
•  Control	Locality	

http://gameprogrammingpatterns.com/data-locality.html	

18/03/19	

7	

Spatial	Locality	
•  Spatial:	having	to	do	with	space	--	or	in	this	case,	proximity	
of	data	

•  Spatial	locality:	the	principle	that	data	near	the	data	being	
accessed	now	will	probably	be	needed	soon	

•  If	data	item	n	is	useful	now,	then	it’s	likely	that	data	item	
n+1	will	be	useful	soon	
–  Data	array	a	accessed	with	stride	1	
–  Instructions	are	accessed	in	sequence	

sum=0	
for	(i=0;i<=n;i++)	
				sum	+=	a[i];	
return	sum;	

Temporal	Locality	
•  Temporal	=	having	to	do	with	time	
•  Temporal	locality:	the	principle	that	data	being	accessed	
now	will	probably	be	accessed	again	soon	

•  Useful	data	tends	to	continue	to	be	useful	
–  Data	variable	sum	referenced	in	each	iteration	
–  Same	instructions	executed	in	each	iteraion	

sum=0	
for	(i=0;i<=n;i++)	
				sum	+=	a[i];	
return	sum;	

18/03/19	

8	

Control	Locality	

ld	b,r2		
ld	a,r1	
add	r3,r1,r2	
st	x,r3	

Energy	per	instruction:	70pJ	

Memory	 a	 b	

ALU	

Register	
File	Controller	

Cache	

x	

Source:	Mark	Horowitz,	ISSC’14	

Load-store	(“von	Neumann”)	 Static	Dataflow	(“non	von	Neumann”)	
x=a+b	

y=(a+b)*(c+d)	

Energy	per	operation:	1-3pJ	

Control	Locality	

High	Level	Synthesis	

RTL	Coding	

int	c	=	a	+b	
a
b
c
d

F
F	

LUT	

0	 1	 0	 0	 0	 1 	0	0	 1 1

a
b
c
d

F
F	

LUT	

a
b
c
d

F
F	

LUT	

a
b
c
d

F
F	

LUT	

..	

..	

1	 0	 0	

..	

..	

0	 0	1	

..	

..	

1	

1	 1	 1	 0	 0	 1 	1	0	 1 0

HLS	Coding	

out=in+1	

18/03/19	

9	

HLS	

float	c	=	a	+b	
Input	reg	 Input	reg	

LOGIC	

Output	reg	

Too	Deep	
Slow	

LOGIC	

LOGIC	

Reg	

LOGIC	

.....	

Reg	

L	cycles	

HLS	Pipelines	
float	c	=	a	+b	 Input	reg	 Input	reg	

Output	reg	

LOGIC	

LOGIC	

Reg	

LOGIC	

.....	

Reg	

L	cycles	

LOGIC	
L	

a	 b	

c	

Pipelines	are	the	Key	in	HLS	

Implies	L	–	1	
internal	

pipeline	stages	

18/03/19	

10	

Pipelines	Key	to	Performance	
•  Initiation	interval	

–  In	addition	to	latency	(L),	we	introduce	
the	property	initiation	interval		

•  “II”,	here	I	
–  No.	of	cycles	before	we	can	accept	

new	inputs	
•  Implementation	1	can	accept	all	4	

inputs	
–  L	=	13	cycles	
–  I	=	1	cycle	
–  2	adds,	1	mult	

•  Implementation	2	
–  L	=	14	cycles	
–  I	=	2	cycles	
–  1	add,	1	mult	

float	c=(a+b)*(a-b)	

L=14	Cycles	

3	op/1	cycle	

3	op/2	cycle	

Throughput	is	halved!	

I	

Pipelines	---	with	Loops	
for (int i = 0; i < N; ++i) {
#pragma HLS PIPELINE II=1
c[i] = (a[i] + b[i]) * (a[i] - b[i]);
}

Loop	Body	
L=13,	II=1	

a(i)	 b(i)	

c(i)	

Loop	iterations	affect	the	runtime	additively,	
regardless	of	body	content	

18/03/19	

11	

Pipelines	---	with	Loops	
for (int i = 0; i < N; ++i) {
#pragma HLS PIPELINE II=2
c[i] = (a[i] + b[i]) * (a[i] - b[i]);
}

Loop	Body	
L=14,	II=2	

a(i)	 b(i)	

c(i)	

1 iteration	 14 + 2 = 16 cycles	
10 iterations	 14 + 20 = 34 cycles	
N iterations	 14 + 2N cycles	
	

Initiation	interval	paid	at	every	iteration	

Ltot	=	L	+	II*N	

Lets	Look	at	How	FPGAs	help/Suffer	
•  Initiation	Interval		essentially	
results	in	a	Pipeline	Stall	
–  So	why	not	always	have	II=1	

•  Intra-iteration:	
– Multiple	accesses	to	the	same	
interface	

•  Inter-iteration	
– Data	dependencies	

•  Low	throughput	requirements		
–  input	only	received	every	16	cycles	

for (int i = 1; i < N - 1; ++i) {
#pragma HLS PIPELINE II=1
res[i] = 0.3333 * (arr[i-1] + arr[i] + arr[i+1]);
}

Interface	
contention!	

II=1 II=3	

18/03/19	

12	

FPGA	Memory	

32	Bit	Register	

BRAM	
Distributed	RAM	

(LUTs)	

Insert	Registers	
for (int i = 1; i < N - 1; ++i) {

res[i] = 0.3333 * (arr[i-1] + arr[i] + arr[i+1]);
}

Loop	

arr	

Stage	1	
Reg	 Reg	

Stage	2	

Stage	3	
arr(i+1)	 arr(i-1)	arr(i)	

(L	=	21,	I	=	1)	

So	How	is	relevant	to	HLS	and	FPGAs	

4	Byte	=	32	bit	⋅	1	

4096	Byte	=	32	bit	⋅	1024	

Memory:	depth	(D)	and	width	(W)	

Dreg=1	

Wreg=32	

DRAM=1024	

WRAM=32	

18/03/19	

13	

Transformations	
•  Optimization	Goals	

–  Perfect	Pipelining	
•  I=1	
•  Maximum	Throughput	

–  Scaling/Folding	
•  Fold	N	by	scaling	up	the	

parallelism	of	the	design	

–  Saturation	
•  Saturate	pipelines	for	the	

majority	of	the	runtime	
–  No	Stalls	

•  Pipeline-enabling	transformations	
•  Transposition	
•  Interleaving	
•  Cross-input	pipelining	
•  Inlining	
•  Cyclic	buffering	
•  Pipelined	loop	flattening/coalescing	
•  Pipelined	loop	fusion	

•  Scalability	transformations	
•  Vectorization	
•  Replication	
•  Streaming	dataflow	
•  Tiling	

•  Secondary	transformations	
•  Memory	access	extraction	
•  Memory	oversubscription	
•  Memory	striping	
•  Type	demotion	

Dependences	
•  Scalar	Variables	

–  True	Dependence	
•  A	=	
•  			=	A	

–  Anti	Dependence	
•  		=	A	
•  A	=	

–  Output	Dependence	
•  A	=		
•  A	=		

–  Input	Dependence	
•  =	A	
•  =	A	

•  Loop	Variables	
for i= 2, 5
 a[i] = a[i] + 3

a[2]

a[2]

a[3]

a[3]

a[4]

a[4]

a[5]

a[5]

read

write

18/03/19	

14	

Dependence	in	Loops	
Array	Anti-dependence	

for i= 2, 5
 a[i-2] = a[i] + 3

a[0]

a[2]

a[1]

a[3]

a[2]

a[4]

a[3]

a[5]

read

write

Array	True-dependence	

for i= 2, 5
 a[i] = a[i-2] + 3

a[2]

a[0]

a[3]

a[1]

a[4]

a[2]

a[5]

a[3]

read

write

Iteration	Space	
for i1 = 0, 5
 for i2 = 0, 3
 a[i1,i2] = 3

i1

i2
Iteration	is	represented	as	coordinates	in	
iteration	space	

Loop	Carried	Dependence	
•  There exists a dependence from statement S1 to S2 in a common nest of

loops iff there exist two iteration vectors i and j such that
–  i < j or i = j and there is a path from S1 to S2 in the body of

the loop
– S1 accesses memory location M on iteration i and S2 accesses

M on iteration j
–  one of these accesses is a write

–  Loop Carried Dependence
•  Statement S2 has a loop-carried dependence on statement S1 if and

only if S1 references location M on iteration i, S2 references M on
iteration j for i= 2, 5

 a[i+1] = f[i] + 3
 f[i+1]=a[i]

18/03/19	

15	

Iteration	Space	Transposition	
•  Modified	Matrix	Multiplication	

•  C=A*B+C	
– Multiplication	of	elements	of	A	and	B	can	be	pipelined	
– Addition	on	Line	8	requires	the	result	of	the	addition	in	
the	previous	iteration	of	the	loop	

Vectorization	
•  Exploit	SIMD	parallelism	with	HLS		

– Partially	unrolling	loop	nests	in	pipelined	sections	
– Can	be	directly	applied	to	the	inner	loop	

for (i=0; i<LEN; i++)
 c[i] = a[i] + b[i];

Vectorization	by	strip-mining	

Vectorization	by	partial	unrolling	

18/03/19	

16	

Type	Demotion	
•  Demote	Data	Types	

–  Less	expensive	alternatives	
– Must	meet	precision	Requirements	

•  Reduce	resource	and	energy	consumption	
•  Bandwidth	requirements	
•  Operation	latency	

–  Use	less	Resources	
•  Compute	Bound	

»  Floating	point	to	fixed	point	
»  Use	Native	Data	types	(16	bit	for	Xilinx)	

•  Bandwidth	Bound	
»  Performance	improves	by	the	the	same	factor	that	the	size	of	
the	data	type	can	be	reduced	

•  Latency	Bound	
»  Floating	point	ops	à	multiple	cycles:	Integer	opsà	1	cycle	

Software	Transformations	In	HLS	

18/03/19	

17	

Reference		
•  Paper	Reference	

•  Transformations	of	High-Level	Synthesis	Codes	for	High-
Performance	Computing	

– https://arxiv.org/abs/1805.08288	

•  Slides	are	mostly	derived		from	
•  https://spcl.inf.ethz.ch/Teaching/2018-sc/	
	

Interleaving	accumulations	to	eliminate	the	loop-carried	dependency	

