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HIGH	LEVEL	SYNTHESIS	FOR	FPGAS:			
EXPLOITING	PIPELINE	PARALLELISM	

	

The	Architecture	Landscape	
•  The	world	of	Transistors	has	evolved	significantly	
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MultiCores	
•  Exponential	increase	in	performance	

–  Improved	organization	
–  Increased	clock	frequency	

•  Increase	in	Parallelism	
–  Pipelining	
–  Superscalar	
–  Simultaneous	multithreading	(SMT)	

•  Diminishing	returns	
–  More	complexity	requires	more	logic	
–  Increasing	chip	area	for	coordinating	and	signal	transfer	logic	

•  Harder	to	design,	make	and	debug	

Source:	https://en.wikichip.org/wiki/intel/microarchitectures/
coffee_lake#Entire_SoC_Overview_.28octa.29	

Architecture	of	a	CUDA-capable	GPU	

©	David	Kirk/NVIDIA	and	Wen-mei	W.	Hwu,	2007-2010	ECE	408,	University	of	Illinois,	Urbana-Champaign	
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Two streaming multiprocessors form a building block
Each has a number  of streaming processors that share control logic 
and instruction cache. 
Each GPU comes with multiple gigabytes of DRAM (global memory). 
Offers High bandwidth off-chip, though with longer latency than typical system memory.
High bandwidth makes up for the longer latency for massively parallel applications
G80: 86.4 GB/s of memory bandwidth plus 8GB/s 
up and down 4Gcommunication bandwidth with CPU

A	good	application	runs	5k	to	12k	threads.	CPU	support	2	to	
8	threads.			
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GPUs	
•  Throughput	optimized	multicore	

– Performs	badly	on	sequential	code	

•  Sources	of	parallelism	
–  Instruction	Level	
– Thread	Level	
– Data	Level	

Field	Programmable	Gate	Arrays	(FPGA)	
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High-Performance	FPGA	Summaryx 		
Intel Stratix 10 Virtex Ultrascale NVidia GPU 

14 nm Intel Tri-Gate 16 nm FinFET 12 nm  
1 GHz 
10 TF single precision 

~600 MHz 
6,840 DSPs (3.1 TF single 
prec.) 

1455 MHz 
5,120 cores (15.7 TF single 
prec.) 

5.5M Logic Elements  2.5M Logic Elements CUDA programming 
4-input LUT, register, carry, 
etc. 

1,182,000 5-input LUTs On-chip memory: 

Block RAM: 28.6 MiB 2,364,000 FFs Registers: 20.8 MiB 

Hardened DRAM controller 
DDR 4 

Block RAM: 9.1 MiB L1/SM: 7.7 MiB 

Various options for memory  L2 Cache: 6.1 MiB 
Hyper Flex Interconnect with 
Regs. 

  

TDP: 125W (estimated) TDP: 95 W  
(Amazon F1 power limit) 

TDP: 300W 

Ease	of	Programmability	vs.	Efficiency	
•  Modern	Super	computers	

– CPU+GPU	
•  CGRAs	

– FPGAs	
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What	dominates	HPC	
•  GPUs	

–  Productivity:	CUDA	enabled	GPGPU	without	hacking	the	
graphics	pipeline	

–  Hardware	support:	Tesla	line	with	ECC,	double/half	
precision	

•  FPGAs	
–  Productivity:	steep	learning	curve	of	hardware	design,	
unpolished	tools	

–  Hardware	support:	low	bandwidth,	no	native	floating	point	
units	

•  Recent	Developments	
–  OpenCL,	HLS	
–  Intel	Startix	X	and	HBM	

How	do	we	get	Performance	
•  Massively	parallel	Computation	

–  250	MHz	is	often	adequate	
–  Lower	power	dissipation	

•  Parallelism	
–  Depth	and	width	of	computations	performed	on	the	input	data	
–  Tradeoff	between	logic,	buffering,	and	time	
– More	scope	for	optimizations	

•  More	optimal	data	movement	
–  Hardwired	more	often	

•  Lots	of	registers	
–  Very	efficient	Pipelines	can	be	easily	set	up	
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Naneet	al.:	“A	Survey	and	Evaluation	of	FPGA	High-
Level	Synthesis	Tools”,	Oct.	2016)	

Programming	FPGAs	
•  Spatial	Register	Transfer	Logic	(RTL)	Programming	

–  Hardware	description	languages	
•  Register	Transfer	Logic	(RTL)	

–  VHDL,	Verilog,	System	C,	SystemVerilog	
•  	Very	verbose	and	very	low	level		

–  Every	Cycle	accounted	for	
•  High-level	synthesis	

–  Input	C/C++/OpenCL	is	transformed	to	the	spatial	paradigm	
–  Lift	programming	from	the	bit	level	to	the	word/datatype	level	

•  Xilinx	and	Intel	both	offer	a	C/C++	and	an	OpenCL	tool	

3	Ls	of	Modern	Computing	
•  Spatial	Locality	
•  Temporal	Locality	
•  Control	Locality	

http://gameprogrammingpatterns.com/data-locality.html	
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Spatial	Locality	
•  Spatial:	having	to	do	with	space	--	or	in	this	case,	proximity	
of	data	

•  Spatial	locality:	the	principle	that	data	near	the	data	being	
accessed	now	will	probably	be	needed	soon	

•  If	data	item	n	is	useful	now,	then	it’s	likely	that	data	item	
n+1	will	be	useful	soon	
–  Data	array	a	accessed	with	stride	1	
–  Instructions	are	accessed	in	sequence	

sum=0	
for	(i=0;i<=n;i++)	
				sum	+=	a[i];	
return	sum;	

Temporal	Locality	
•  Temporal	=	having	to	do	with	time	
•  Temporal	locality:	the	principle	that	data	being	accessed	
now	will	probably	be	accessed	again	soon	

•  Useful	data	tends	to	continue	to	be	useful	
–  Data	variable	sum	referenced	in	each	iteration	
–  Same	instructions	executed	in	each	iteraion	

sum=0	
for	(i=0;i<=n;i++)	
				sum	+=	a[i];	
return	sum;	
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Control	Locality	

ld	b,r2		
ld	a,r1	
add	r3,r1,r2	
st	x,r3	

Energy	per	instruction:	70pJ	

Memory	 a	 b	

ALU	

Register	
File	Controller	

Cache	

x	

Source:	Mark	Horowitz,	ISSC’14	

Load-store	(“von	Neumann”)	 Static	Dataflow	(“non	von	Neumann”)	
x=a+b	

y=(a+b)*(c+d)	

Energy	per	operation:	1-3pJ	

Control	Locality	

High	Level	Synthesis	

RTL	Coding	

int	c	=	a	+b	
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HLS	Coding	

out=in+1	
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HLS	

float	c	=	a	+b	
Input	reg	 Input	reg	

LOGIC	

Output	reg	

Too	Deep	
Slow	

LOGIC	

LOGIC	

Reg	

LOGIC	

.....	

Reg	

L	cycles	

HLS	Pipelines	
float	c	=	a	+b	 Input	reg	 Input	reg	

Output	reg	

LOGIC	

LOGIC	

Reg	

LOGIC	

.....	

Reg	

L	cycles	

LOGIC	
L	

a	 b	

c	

Pipelines	are	the	Key	in	HLS	

Implies	L	–	1	
internal	

pipeline	stages	
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Pipelines	Key	to	Performance	
•  Initiation	interval	

–  In	addition	to	latency	(L),	we	introduce	
the	property	initiation	interval		

•  “II”,	here	I	
–  No.	of	cycles	before	we	can	accept	

new	inputs	
•  Implementation	1	can	accept	all	4	

inputs	
–  L	=	13	cycles	
–  I	=	1	cycle	
–  2	adds,	1	mult	

•  Implementation	2	
–  L	=	14	cycles	
–  I	=	2	cycles	
–  1	add,	1	mult	

float	c=(a+b)*(a-b)	

L=14	Cycles	

3	op/1	cycle	

3	op/2	cycle	

Throughput	is	halved!	

I	

Pipelines	---	with	Loops	
for (int i = 0; i < N; ++i) { 
#pragma HLS PIPELINE II=1 
c[i] = (a[i] + b[i]) * (a[i] - b[i]); 
} 

Loop	Body	
L=13,	II=1	

a(i)	 b(i)	

c(i)	

Loop	iterations	affect	the	runtime	additively,	
regardless	of	body	content	
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Pipelines	---	with	Loops	
for (int i = 0; i < N; ++i) { 
#pragma HLS PIPELINE II=2 
c[i] = (a[i] + b[i]) * (a[i] - b[i]); 
} 

Loop	Body	
L=14,	II=2	

a(i)	 b(i)	

c(i)	

1 iteration	 14 + 2 = 16 cycles	
10 iterations	 14 + 20 = 34 cycles	
N iterations	 14 + 2N cycles	
	

Initiation	interval	paid	at	every	iteration	

Ltot	=	L	+	II*N	

Lets	Look	at	How	FPGAs	help/Suffer	
•  Initiation	Interval		essentially	
results	in	a	Pipeline	Stall	
–  So	why	not	always	have	II=1	

•  Intra-iteration:	
– Multiple	accesses	to	the	same	
interface	

•  Inter-iteration	
– Data	dependencies	

•  Low	throughput	requirements		
–  input	only	received	every	16	cycles	

for (int i = 1; i < N - 1; ++i) { 
#pragma HLS PIPELINE II=1 
res[i] = 0.3333 * (arr[i-1] + arr[i] + arr[i+1]); 
} 

Interface	
contention!	

II=1 II=3	
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FPGA	Memory	

32	Bit	Register	

BRAM	
Distributed	RAM	

(LUTs)	

Insert	Registers	
for (int i = 1; i < N - 1; ++i) { 
 
res[i] = 0.3333 * (arr[i-1] + arr[i] + arr[i+1]); 
} 

Loop	

arr	

Stage	1	
Reg	 Reg	

Stage	2	

Stage	3	
arr(i+1)	 arr(i-1)	arr(i)	

(L	=	21,	I	=	1)	

So	How	is	relevant	to	HLS	and	FPGAs	

4	Byte	=	32	bit	⋅	1	

4096	Byte	=	32	bit	⋅	1024	

Memory:	depth	(D)	and	width	(W)	

Dreg=1	

Wreg=32	

DRAM=1024	

WRAM=32	



18/03/19	

13	

Transformations	
•  Optimization	Goals	

–  Perfect	Pipelining	
•  I=1	
•  Maximum	Throughput	

–  Scaling/Folding	
•  Fold	N	by	scaling	up	the	

parallelism	of	the	design	

–  Saturation	
•  Saturate	pipelines	for	the	

majority	of	the	runtime	
–  No	Stalls	

•  Pipeline-enabling	transformations	
•  Transposition	
•  Interleaving	
•  Cross-input	pipelining	
•  Inlining	
•  Cyclic	buffering	
•  Pipelined	loop	flattening/coalescing	
•  Pipelined	loop	fusion	

•  Scalability	transformations	
•  Vectorization	
•  Replication	
•  Streaming	dataflow	
•  Tiling	

•  Secondary	transformations	
•  Memory	access	extraction	
•  Memory	oversubscription	
•  Memory	striping	
•  Type	demotion	

Dependences	
•  Scalar	Variables	

–  True	Dependence	
•  A	=	
•  			=	A	

–  Anti	Dependence	
•  		=	A	
•  A	=	

–  Output	Dependence	
•  A	=		
•  A	=		

–  Input	Dependence	
•  =	A	
•  =	A	

•  Loop	Variables	
for i= 2, 5 
  a[i] = a[i] + 3 

a[2] 

a[2] 

a[3] 

a[3] 

a[4] 

a[4] 

a[5] 

a[5] 

read 

write 
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Dependence	in	Loops	
Array	Anti-dependence	

for i= 2, 5 
  a[i-2] = a[i] + 3 

a[0] 

a[2] 

a[1] 

a[3] 

a[2] 

a[4] 

a[3] 

a[5] 

read 

write 

Array	True-dependence	

for i= 2, 5 
  a[i] = a[i-2] + 3 

a[2] 

a[0] 

a[3] 

a[1] 

a[4] 

a[2] 

a[5] 

a[3] 

read 

write 

Iteration	Space	
for i1 = 0, 5 
  for i2 = 0, 3 
    a[i1,i2] =  3 

i1 

i2 
Iteration	is	represented	as	coordinates	in	
iteration	space	

Loop	Carried	Dependence	
•  There exists a dependence from statement S1 to S2 in a common nest of 

loops iff there exist two iteration vectors i and j such that 
–   i < j or i = j and there is a path from S1 to S2 in the body of 

the loop 
– S1 accesses memory location M on iteration i and S2 accesses 

M on iteration j 
–   one of these accesses is a write  

–  Loop Carried Dependence 
•  Statement S2 has a loop-carried dependence on statement S1 if and 

only if S1 references location M on iteration i, S2 references M on 
iteration j for i= 2, 5 

  a[i+1] = f[i] + 3 
  f[i+1]=a[i] 
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Iteration	Space	Transposition	
•  Modified	Matrix	Multiplication	

•  C=A*B+C	
– Multiplication	of	elements	of	A	and	B	can	be	pipelined	
– Addition	on	Line	8	requires	the	result	of	the	addition	in	
the	previous	iteration	of	the	loop	

Vectorization	
•  Exploit	SIMD	parallelism	with	HLS		

– Partially	unrolling	loop	nests	in	pipelined	sections	
– Can	be	directly	applied	to	the	inner	loop	

for (i=0; i<LEN; i++) 
 c[i] = a[i] + b[i]; 

Vectorization	by	strip-mining	

Vectorization	by	partial	unrolling	
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Type	Demotion	
•  Demote	Data	Types	

–  Less	expensive	alternatives	
– Must	meet	precision	Requirements	

•  Reduce	resource	and	energy	consumption	
•  Bandwidth	requirements	
•  Operation	latency	

–  Use	less	Resources	
•  Compute	Bound	

»  Floating	point	to	fixed	point	
»  Use	Native	Data	types	(16	bit	for	Xilinx)	

•  Bandwidth	Bound	
»  Performance	improves	by	the	the	same	factor	that	the	size	of	
the	data	type	can	be	reduced	

•  Latency	Bound	
»  Floating	point	ops	à	multiple	cycles:	Integer	opsà	1	cycle	

Software	Transformations	In	HLS	
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Reference		
•  Paper	Reference	

•  Transformations	of	High-Level	Synthesis	Codes	for	High-
Performance	Computing	

– https://arxiv.org/abs/1805.08288	

•  Slides	are	mostly	derived		from	
•  https://spcl.inf.ethz.ch/Teaching/2018-sc/	
	

Interleaving	accumulations	to	eliminate	the	loop-carried	dependency	


